
Galactica Network Reputation
Framework Implementation

January 20, 2023

1

Introduction 4

Target Properties 5

Reputation function and RRC 6

Use Case Specification (GalaLend) 7

Approaches Considered 8
Continuous dApp state checks . 9
Advantages . 10

Disadvantages . 10
GalaLend Example . 10

Rating agencies . 11
Advantages . 11
Disadvantages . 11
GalaLend Example . 11

On-chain access to TX history . 12
Using zkProofs on TX history . 12
Simplified version of this approach 13
Advantages . 13
Disadvantages . 13
GalaLend Example . 13

Subchains Approach 14
Cosmos Subchains . 14
Reputation Module . 15
Stages of Historical Data Synchronization 15
Live Blocks Processing . 15

Contingent Transactions . 16
Calculation Process . 16
Delays . 17

GalaLend Example . 17
Subchain economics . 17

Further considerations 18

Appendix I: Off-chain Indexing with third parties in detail 18
Scenarios . 18

Lending Use Case . 18
Continuous State Checks 19
Rating Agencies . 20
Reputation Proof . 21

Result . 21
Architecture . 22

2

Interfaces . 22
Components . 22

Continuous state reputation 22
Rating agencies . 23
Reputation function . 23

Standards . 24
GIP-42: Web3 footprint provider standard 24

Appendix II On-chain access to TX history in detail 25
Introduction . 25
Inputs . 25
Outputs . 25

3

Introduction

The following is the specification of the Galactica Network reputation frame-
work, the backbone of the system that ties together other technological pillars of
the network including: contingent transactions, Reputation Root Contract, and
zkCertificates, arriving at the most complete implementation of a protocol ca-
pable of DeSoc primitives. A careful reader shall note the omission of Guardians
and zkKYC: a particular use case of zkCertificates - this is intentional as from
the protocol perspective, zkKYC’s core purpose is that of bootstrapping a Sybil
resistance that makes the concept of reputation (i.e. web3 footprint) meaningful
in the first place. In other words, zkKYC and Guardians power the concept of
on-chain reputation, while the Reputation Framework described below leverages
it to arrive at DeSoc primitives (see the use cases for details).

Reminding ourselves of several definitions pertaining to the Reputation Frame-
work from an earlier Medium article:

1. Following a human in the blockchain space could be referred to as a Per-
sistent Identity.

2. The multitude of interactions between any such identity and the rest of
the protocol could then be called one’s web3 footprint.

Figure 1: Reputation & web3 footprint

In this context, ‘persistent’ means that a protocol representation of a human,
the private key, corresponds to a real-world person or identity and that such
on-chain identities are costly to duplicate and this cost increases over time. But
why would the cost increase in time? It is one’s web3 footprint that would
define this on-chain identity and naturally, this footprint increases in size and
complexity as time passes making it harder to replicate or tamper with.

The Persistent Identity is defined by its web3 footprint — the relationships
between an account, other accounts, and the system itself. Through one’s web3
footprint, users’ impact on the network can be quantified by other users, thus
defining a virtual correspondence to the real-world concept of reputation.

4

https://medium.com/galactica-network/persistent-identities-and-the-cypher-state-abe67a850fe9

Protocol’s Sybil resistance, Persistent Identities, and web3 footprint together
enable non-trivial societal institutions to function on-chain — in a similar fash-
ion to how EVM’s arbitrary transactional logic enabled the emergence of eco-
nomic institutions in what’s today known as DeFi.

The structure of this piece is different from those we have written in the
past. As a reminder, the design of RRC - the Reputation Root Contract (see
page 8 of our whitepaper for a reference) is such that any input available on-
chain can be used, including in principle those produced off-chain and imported
through any oracle. What’s described below is the standard implementation
that we recommend for any mission-critical application as it inherits the security
guarantees of the network itself, something that off-chain oracles clearly do not
- and that has been among the core goals we have considered when designing
this reputation framework. We, however, also include the description of other
possible designs that we have considered along with the justification for favoring
the reputation framework we eventually arrived at.

To the best of our knowledge, no one has attempted to build a system of
reputation contingent transactions 100% on-chain as there was hardly any point
in having such a system in a non-Sybil resistant setup. Hence we view this article
in particular, and this implementation in general, to be of an exploratory nature
rather than a standard-setting optimal solution. As a careful reader will note,
there are trade-offs between security, latency, commercial viability, a burden
allocation of deciding which data to collect and how, as well as the consensus
on the ultimate standard to be used throughout the network and all within
constraints of maintaining ERC20 compatibility.

To understand the context of this specification an understanding of the fol-
lowing Galactica components is helpful:

1. Guardians & zkCertificates

2. zkKYC Design paper

3. Use Cases deck

4. Whitepaper

Target Properties

This document specifies an approach to measuring a user’s web3 footprint in
the Galactica Network (henceforth, Galactica). It is a central component of
the reputation framework because it provides specific data concerning user be-
havior on Galactica. EVM blockchains have no direct way to access historical
transaction data from on-chain smart contracts. This makes it a difficult task
to calculate the reputation based on the user’s previous behavior.

A successful solution is expressive, efficient, and accurate:

5

https://docsend.com/view/n5nnsyraaifzpvqw
https://medium.com/galactica-network/technical-article-1-oracle-nodes-and-zkcertificates-ea55edcd6b99
https://docsend.com/view/85ua264xxc8sesut
https://docsend.com/view/r6k4pmuzqmhte957
https://docsend.com/view/n5nnsyraaifzpvqw

1. Expressive enough to provide the data needed for conceivable and rea-
sonable reputation functions such that they can be flexible enough to
be specified by users’ reputation functions (e.g. ecosystem contribution,
creditworthiness, long-time loyalty);

2. Efficient enough in terms of storage and computation to work in a decen-
tralized and high throughput blockchain;

3. Accurate enough to provide meaningful data that cannot be faked;

4. Requires contingency options integrated into the node to provide a blockchain-
wide possibility for contingent token transfers without requiring changes
to the ERC20 standard;

5. In the limited info stored setup, the burden of standard creation needs to
be decentralized. In other words, different data feeds must be able to exist
around one dApp. What to store must not be left entirely up to dApp
creators;

The structure of this document first considers the limitations of the current
approach. Then we provide a brief overview of the reputation functions and the
RRC, which is followed by a review of the approaches to designing the imple-
mentation framework for the Galactica Network reputation. Then we discuss
the current approach in detail. This article also contains two Appendixes that
focus on some of the prior (no longer considered viable) approaches.

Public commentary and criticism are expected and are warmly welcomed.

Reputation function and RRC

Reputation functions are defined by dApps and users. They can either create
a custom function based on the available on-chain data or reuse such functions
provided by other parties.

Available inputs for reputation functions are a ZKP by the user being rated
and on-chain data.

A ZKP can include the following components:

1. Holding a zkKYC or other zkCertificates as well as proving statements
based on these, for example being at least 18 years old, living in a specific
area, or having a university degree.

2. Alice’s humanIDs for dApps relevant to the reputation function. This
guarantees that Alice has to include all of her on-chain activity with spe-
cific dApps without disclosing which address she used for it.

3. On-chain input data from various sources, such as:

a. Smart contract state (see Continuous state checking approach)

b. Rating agency oracles (see rating agency approach)

6

c. Indexer data passed through the node (see reputation calculation in
the node)

4. Merkle proofs for input data (private to not disclose the link between
humanIDs)

5. Calculation of final score (calculation private, result public)

The ZKP is sent to the reputation smart contract, verified for ZK validity
and consistency of the Merkle roots with chain data.

The Root reputation contract (RRC) is a special smart contract on the
Galactica blockchain. It works as a registry for reputation requirements of
contingent transactions. Every address can register a minimum score and rep-
utation function in the form of an address to the smart contract defining the
reputation function. Whenever someone wants to send funds to an address, the
protocol looks up the reputation requirements in the RRC to determine if the
transaction is contingent. For more information please consider the Reputation
Root Contract (RRC) section of the whitepaper.

Figure 2: Galactica Network’s Reputation Root Contract

Use Case Specification (GalaLend)

In this paragraph we will introduce a use case that will be a reference to ex-
plaining the difference between the approaches we have considered, and this use
case is included in some of the approaches for further clarity.

1. Alice wants to take a loan in the Galactica Network.

2. Alice likes Galactica because she can prove her KYC without letting others
know who she actually is;

7

https://docsend.com/view/n5nnsyraaifzpvqw

3. She visits the front end of a DeFi lending platform;

4. It is called GalaLend and checks the reputation of its users to determine
the required collateral rate;

5. Undercollateralized loans are only given to trustworthy users;

6. GalaLend uses a self-developed reputation function to estimate creditwor-
thiness using the Galactica reputation framework;

Our task is to describe the system that collects and provides the data about
Alice’s web3 footprint. It is the input for GalaLend’s reputation function and
should show that Alice has not honored her obligations in the past on the
Galactica network.

Approaches Considered

There are various ways to measure a user’s web3 footprint and determine their
reputation. Ideally, it takes the whole transaction history into account and offers
expressive reputation functions while still being efficient enough to be verified
by a distributed blockchain. This is a complex task with conflicting goals.

To find a viable solution, multiple approaches were considered. In the fol-
lowing text, some of these approaches are discussed in detail alongside their
advantages and disadvantages.

1. Continuous dApp state checks;

2. Off-chain Indexing with third parties (Rating Agencies);

3. Smart contracts accessing transaction history;

4. Current solution: calculating reputation inside a node (validators calculate
reputation iteratively while processing blocks);

An exhaustive list can be found in Table 1 - we had to forego part of them
right at the outset, as they do not possess the target properties mentioned above.

8

Table 1: Galactica Network’s Reputation Root Contract

Continuous dApp state checks

DApps that want to contribute web3 footprint data of their users do so using
continuous state checks.

The continuous state assigns each dApp-specific humanID some data. This
can be data the smart contract uses anyway for its business logic, a user rating,
or some other measurement.

The current state is always available on-chain and is continuously updated
whenever a call processed by the smart contract influences the state.

This state is made available to other smart contracts through an ABI func-
tion according to the GIP-42 Standard defined below. To preserve the privacy
of the user (which humanIDs he/she has across different services), the smart

9

contract also provides the root of a Merkle tree holding the data as well as
event logs to construct Merkle proofs.

Advantages

1. Condenses the complexity of the transaction history into an aggregated
state for each user of a dApp;

2. Lowers the complexity of the input data for the reputation function;

3. State often already available as part of the dApp logic;

4. Secure on-chain computation;

Disadvantages

1. Requires developer labor/man-hours to follow the standard;

2. Dependencies between contracts could lead to exploits;

3. Hard to adjust or introduce metrics retroactively to her reputation score.
It takes the relevant dApps, her zkKYC;

4. Each dApp can decide what data to track leading to a heterogenous quality
of the base data for reputation calculation;

GalaLend Example

1. Each lending dApp Alice used in the past keeps track of a continuous state
for her dApp-specific humanID. For example:

a. Lending dApp 1 saves her current outstanding loan, the amount of
collateral, and if any of her positions have been liquidated before.

b. Lending dApp 2 saves the current outstanding loan, her next due
date for repayment, and how often she missed a repayment date.

c. Lending dApp 3 manages Alice’s state in a private manner and only
exposes a trust score between 0 and 255.

2. Whenever Alice interacts with one of her lending dApps, the smart con-
tract updates her continuous state accordingly.

3. When Alice needs to use her reputation for a ‘creditworthiness’ score-like
function, she presents a ZKP for her reputation score. It takes the relevant
dApps, her zkKYC, humanIDs, and Merkle proofs for her state in each
dApp as input and outputs her reputation score as well as the Merkle
roots for on-chain verification. The ZKP proves the correctness of the
score without revealing any humanID or concrete values of her state.

10

Rating agencies

Rating agencies use off-chain indexers to compute complex functions over the
full transaction history of users. The results are committed on-chain through
an oracle smart contract.

Rating agencies could be incentivized by on-chain fees implemented in the
oracle contract, off-chain by services relying on them, or through protocol-level
tokenomics.

Advantages

1. Off-chain computation allows complex reputation functions with much
input data from the indexer;

2. Rating results can retroactively be changed to implement new models or
sanction lists on historical transaction data;

3. Creates a business model for rating agencies;

4. Outsources rating to the market fostering innovation of rating DAOs etc;

Disadvantages

1. Depends on the availability of humanID to cross-reference addresses in a
later step;

2. Lack of transparency on the side of rating agencies having earned them
an unfavorable reputation in TradFi;

3. Off-chain input can be manipulated with consequences for on-chain dApps;

4. “Chicken and Egg” problem between rating agencies and projects requir-
ing reputation input data; If there is no rating agency providing the data
a project needs, the project is likely to implement the off-chain indexer
check itself and not share it with other projects on-chain;

5. Rating agencies may present a centralization force;

6. Rating results are delayed on-chain due to the potential computation effort
and oracle submission time. This leaves room for malicious activity before
the rating is updated, for example through flash loans;

GalaLend Example

1. Alice uses lending dApps on Gala. Some of them query her dApp-specific
humanID in the smart contract to uniquely identify her. (The humanID
is useful in this approach to allow computing a user’s reputation when his
activity is split over multiple addresses.);

2. A rating agency runs an indexer to track Alice’s on-chain activity;

11

3. The data from the indexer and on-chain state is aggregated by the rating
agency into a rating result. This can be a score, such as ‘AAA’, a detailed
statistic about her lending history, or a blacklist containing addresses and
humanIDs that are not creditworthy;

4. The reputation result is published on-chain through an Oracle contract.
It stores data in a Merkle root and collects a fee for the agency when being
called from a smart contract;

5. When Alice wants to present her reputation, she calculates it on-chain.
The input is a ZKP that takes Alices zkKYC, her humanIDs for specific
dApps, and the rating agency’s results for these humanIDs. The ZKP
proves Alice’s reputation score without revealing her concrete addresses,
humanIDs or intermediate ratings;

In Appendix I one can find further information on the implementation issues
related to this approach.

On-chain access to TX history

Multiple approaches were considered here, however, the main issue that persists
is that data produced by an address (e.g. transactions) is challenging to be an-
alyzed on-chain. The transactional history is not available to smart contacts to
reduce the complexity and keep the working memory manageable. Blockchain
analytics companies utilize state-of-the-art AI approaches that are computa-
tionally heavy in order to convert the data into useful information. We believe
that at this point there is no solution for efficiently analyzing transaction history
data in on-chain smart contracts alone. The base data would require nodes that
are as heavy to operate as indexers and EVM smart contracts computation is
too costly to work with transaction data as it needs to be recomputed a lot in
a distributed blockchain.

Using zkProofs on TX history

ZKPs can be utilized to resolve the complexity of analyzing transaction data
from a smart contract. In general, if the transaction history is stored as a
Merkle tree on-chain (fairly easy to do), the smart contract can request the user
to generate a ZKP on a given condition about their past activity. For example,
it may request them to prove that all their loans are closed within a certain
time frame and that they have never received funds from non-KYCed accounts.

While this approach may appear viable, the following issues persist:

1. The condition that reliably confirms the aforementioned (or similar) re-
quirements will be relatively large, given that it has to check many inter-
actions with various protocols.

2. Furthermore, calculating a ZKP on such a condition requires significant
computation time - it may take days on the average user’s device.

12

Simplified version of this approach

We have attempted to devise a framework that will allow us to store on-
chain events in a simple format (rather than transaction history) - that is,
pre-analyzed. The implementation is described in Appendix II, and while rela-
tively simple we believe that it will be avoided by the community as it requires
every dApp developer to store the usage data of their dApp in a special smart
contract.

Advantages

1. Data available for expressive reputation functions;

2. Secure on-chain computation;

3. Possibility to recompute modified reputation functions on tx history;

Disadvantages

1. Heavy burden on node operation because computation is repeated for
decentralized verification;

2. Complex computation either in smart contract or in ZKP generation lead-
ing to high gas costs or long proving times;

GalaLend Example

1. Alice uses a lending platform and during tx processing, a record of this tx
processing is made available on-chain

a. Either directly in memory accessible by smart contracts;

b. Or as patricia root of each new block;

c. Or in a custom record of the lending smart contract itself;

2. When Alice wants to present her ‘creditworthiness’ reputation to a new
lending dApp, a smart contract computes the reputation using

a. The on-chain database of her previous transactions with other lending
dApps;

b. A ZKP disclosing her reputation based on previous transactions with
lending dApps. The ZKP was computed off-chain by Alice. The
correctness is verified on-chain using saved Patricia roots of previous
blocks.

c. Customized ABI functions of other lending dApps returning Alice’s
previous actions;

3. Based on the computed reputation score, Alice is permitted to use the
new lending dApp or gets a customized offer;

13

Subchains Approach

While it appears challenging to implement, as it requires node development and
also every validator will have to store more than just blocks, this approach is
decentralized, trustless, and easy to use for everyone. As it will become clear
from the information provided further in this document, this approach further-
more addresses all of the limitations described in the previous two solutions
considered.

Cosmos Subchains

Subchain is an independent network that is connected to the mainnet. The
connection usually includes a bridge and technology that allows the exchange
of information between the subchain and the mainnet. In this case, the IBC
protocol will be utilized, allowing synchronization between the states of EVM-
compatible networks. Subchains are often used to reduce the load on a mainnet
by delegating specific features to them. They receive inputs from the main
network, carry out computations and send the results back.

It was concluded that it is beneficial to use subchains for reputation metrics
calculations. The subchain reads data from the mainnet blocks through RPC,
validates block hashes, calculates reputation, then submits the calculation re-
sults back to the mainnet. The first subchain will be launched by Galactica
and used to calculate the reputation metric that the governance framework will
utilize to determine users’ voting power.

Figure 3: Galactica Mainnet and the Galactica Zones/Subchains

14

Reputation Module

The Reputation module is a typical Cosmos SDK and is embedded at the core of
Galactica Network. The on-chain reputation calculation method utilized here
allows the use of the logic present in a smart contract based on the Reputation
value. This logic can be used to reach a consensus among Validators based on
block production results, in addition to amending Reputation values.

Each Validator calculates Reputation values independently and only vali-
dates Merkle root hashes from the data they used for calculations.

The module operates in two synchronization modes:

1. Sync (Historical) - a state in which the Reputation has not yet been
calculated from historical data and the Reputation is actively indexing.
In this state, the Reputation value cannot be used in other smart contracts;

2. Live (On-head) - Reputation is calculated for the head block and it is
possible to use the Reputation in other smart contracts and modules.

Stages of Historical Data Synchronization

During historical data indexing, a Validator performs the following actions:

1. Reads the subsequent block;

2. Validates blockchain hashes;

3. For each transaction:

a. Decodes transactions and their events;

b. Carries out the formation of source data;

c. Carries out data aggregation by event type or another group;

d. Calculates Reputation based on aggregations calculated in the past;

e. Saves the result of the Reputation calculation in a smart contract.

Validators store source and aggregated data off-chain; however, they keep the
Merkle root hashes of that data on-chain. To add new functions which build the
source data and data aggregations, special EVM smart contracts (repositories)
are provided. It makes it possible to add functions that expand the functionality
of the Reputation module.

Utilizing multiple intermediate steps in the indexing pipeline makes storing
data off-chain possible, allowing for lower on-chain storage. The smart contract
that considers the reputation value is public - anyone can observe what the
reputation consists of.

Live Blocks Processing

Live blocks processing utilizes the same algorithm as historical processing to
calculate reputation metrics in every new block. It implements EVM hooks
PostTxProcessing to subscribe for incoming transactions.

15

Contingent Transactions

When the live processing module receives a transaction, a check is carried out
to verify its compliance with the established reputational requirements. This
includes two mechanisms:

1. An address on the Galactica Network can be set up with a threshold of
a minimum reputation value needed by senders to be able to send funds
to this address. In case the reputation of a sender is insufficient, the
transaction will fail. This will work with native asset transfers as well as
with erc20, erc721, and erc1155 token standards.

2. A smart contract may set up reputation requirements for every public
mutable method. The contract needs to have a view method, containing
a dictionary of:

a. Method id;

b. Reputation metric id;

c. Condition;

If the executor does not meet the listed reputation requirement(s) - the
transaction will fail.

Calculation Process

The implementation of a subchain (blockchain node) includes a special Indexer
specifically for on-chain events. This Indexer can collect, store, and aggregate
specific events described in a root on-chain contract.

For example, it can store and aggregate trades from multiple DEX protocols
on the mainnet. The description for such logic would resemble the following:
Step 1:

• List of contract addresses of these DEXs

• List of trade methods from these DEXs ABIs (a list for every DEX)

• List of fields which should be stored in Indexer

Step 2:

• Using the resulting entries and a formula compute a specific value (e.g.
total volume traded, number of trades, total fees paid).

The Reputation value, which is a result of an aggregation, will be re-calculated
every block by all subchain Validators following given rules.

Using the Indexer, we can calculate metrics for every address, at every block.
What remains is to actually calculate the Reputation. The formula (or formulas)

16

for calculating it are located within the root smart contract, and Validators of a
subchain will calculate Reputation based on values obtained from the Indexer,
then push those values to the mainnet using IBC.

The role of subchains in this process is to avoid the overload of Indexers and
only store on-chain what is required for critical calculations.

Delays

There is a delay between events that happen on the mainnet and those subse-
quently delivered to a subchain. This delay may be up to N blocks in duration
(subject to further testing to estimate the exact delay), meaning that even in
a subchain the Reputation is delayed, and thus, unsuitable for time-sensitive
operations such as flash loans.

This delay may lead to a state where certain subchains may be utilized solely
by specific protocol subcategories - e.g. a dedicated subchain for lending proto-
cols. This specialization of subchains will allow them to track the interactions
of a given user among themselves without delay.

For example, provide undercollateralized loans to those users who have a lot
of positive activity on the mainnet (delayed info) and never failed to pay for a
loan (instant data, located on a subchain). Such a hybrid Reputation metric
may help lending protocols merge a user’s overall score from the mainnet, with
a trustless lending rating that lives on the said subchain.

GalaLend Example

1. Alice uses lending dApps on the Galactica Network. Some of them query
her dApp-specific humanID in the smart contract to identify her uniquely.
(The humanID is useful in this approach as it allows the computation of
a user’s reputation when their activity is split over multiple addresses.);

2. The lending dApps and other Galactica services usage history is aggre-
gated and stored by the Galactica validators. Some of them are maintain-
ing subchains and others - the mainnet. They use this aggregated data to
calculate the reputation of every humanID in line with various formulas.
The result of calculation - the reputation itself stored on every change in
a special smart contract in the form of a Merkle tree.

3. When Alice wants to present her reputation, she does it on-chain. The
input is a ZKP that takes Alice’s zkKYC, her humanIDs for specific dApps,
and the reputation results for these humanIDs from the smart contract
mentioned in point 2. The ZKP proves Alice’s reputation score without
revealing her concrete address(es), humanIDs, or intermediate ratings;

Subchain economics

This will be discussed in a separate article specifically dedicated to subchain
economics.

17

Further considerations

1. To use on-chain data as verification for ZKPs without revealing the data
in public proof inputs (so that users do not have to expose all of their
humanIDs at once), it is required to store it in a Merkle tree.;

a. Adds complexity to smart contracts;

b. Leads to concurrency issues (root being changed before a proof is
verified). If we allow a history of roots, proofs might be validated
against old states that were exploited recently;

2. Versioning web3 footprint inputs might be difficult;

3. A lot of complexity originates from having multiple addresses and dApp-
specific humanIDs per user;

4. Timing issue. How long is a ZKP valid? How can conflicts be detected?

Appendix I: Off-chain Indexing with third parties
in detail

Scenarios

Lending Use Case

The use case is the same as described earlier in the Use Case Specification
(GalaLend) section. The following diagram gives an overview of the components
involved in this example. Because there is a lot going on, we go through it step
by step.

18

Alice uses multiple addresses on Galactica to prevent others from profiling
her identity on-chain from the selective disclosures she has made in the past.
With Addr1 and Addr2 she already used lending services on Galactica. They
are different lending services to CreditGala, but still relevant for CreditGala’s
reputation score for creditworthiness. With Addr1, Alice used a service called
GAave, and with Addr2 the lending service Gompound. She proved to both
services that she is a real person using her zkKYC held by Addr3.

Continuous State Checks

Alice has an open loan on GAave, but her past business with the platform
is flawless. The dApp tracks Alice’s state including the outstanding loan bal-
ance. Because the dApp does not know Alice’s name, it uses her dApp-specific

19

humanID, which is XY. This ID uniquely identifies Alice on GAave. So no
matter which address or zkKYC Alice uses, the dApp knows that it is dealing
with the human having the ID XY. The state of the dApp is updated on every
transaction, such as paying back a portion of the loan or someone executing
loan liquidation. This is done anyway by the dApp to implement the lending
business logic. Furthermore, the dApp keeps track of a boolean flag if Alice has
ever defaulted because it charges previously defaulted users a higher fee. This
flag acts as a continuous state check for Alice’s web3 footprint. It is a state-
ment about previous activity that is updated with every transaction. GAave
chose to track this state. But each dApp is free concerning what and how to
track it. So it could also have chosen to track the total volume of loans paid
back.

On the Compound dApp, Alice has the dApp-specific humanID ZQ. Here
Alice defaulted on a loan in the past and the dApp tracks this with an internal
trust score. It is also continuously updated according to Alice’s interaction with
the dApp.

Because both GAave and Gompound want to be interoperable and con-
tribute to the Galactica ecosystem, they implement Gala’s web3 footprint stan-
dard for continuous state checks, called GIP-42. According to the standard,
dApps provide their internal continuous state through an ABI function as data
for reputation calculation. The data is indexed by the user’s dApp-specific
humanID, and represented by a Merkle tree.

CreditGala also involves other dApps, such as Lending3, in the reputation
function. But Alice did not use the Lending3 dApp. Therefore she has no
humanID entry there.

Rating Agencies

The continuous state of GAave and Gompound is already a good basis for
CreditGala’s reputation function. In terms of efficiency and accuracy, it is
good because it is computed in smart contracts alongside the usual lending
business logic. However, the expressiveness could be improved because it only
covers fixed statements specified by the developers of GAave and Gompound.
CreditGala wants to complement it with a more detailed analysis of Alice’s
transaction history. They want to add a measure of loan repayment punctuality
that is not covered by continuous state checks. This measure can be computed
with an indexer by going through all of Alice’s lending platform transactions
(identified by XY and ZQ). Because it is computationally heavy, this is done
off-chain. CreditGala outsourced the task to a rating agency called Rating
Agency 2. They act as an oracle 1 and commit the results of the analysis for
each humanID 2 on the blockchain. The rating agency gets paid by CreditGala

1They can alter it, I guess we can have a network of reputation calculators for the Al-
icee standards and the onchain data aggregator contract only receives the data with enough
signatures. This is one of the reasons for investigating the possibility of a Cosmos sidechain
specifically for reputation.

2They only see addresses and dApp specific human IDs. So rating agencies can provide

20

directly.
Additionally, CreditGala includes the credit score of the Rating Agency 1 in

their reputation function for additional robustness 3.

Reputation Proof

CreditGala published their reputation function as a smart contract on Galac-
tica. It is used by the Galactica Root Reputation Contract (every dApp or user
can define their own reputation function and register implementation address
in this smart contract), and computes a score in the range [0, 1] based on the
on-chain inputs of the continuous state from the lending dApps and the rating
agency oracles.

To preserve privacy, users prove their reputation score in a zero-knowledge
proof (ZKP). The ZKP includes the following components:

1. Human ID for CreditGala based on Alice’s zkKYC (public input);

2. Alice’s human IDs for all dApps relevant to the reputation function (GAave,
Gompound, Lending3) → XY, ZQ, FJ (stay private in the ZKP);

3. Score function input data for those human IDs (never defaulted on GAave,
trust score 8 on Gompound, missed repayment according to Rating Agency
1, scores AAA and B according to Rating Agency 2, private in ZKP);

4. Merkle proofs for input data (private to not disclose the link between
humanIDs);

5. Calculation of final score (calculation private, result public);

The ZKP is sent to the reputation smart contract, verified for ZK validity
and consistency of the Merkle roots with chain data.

Result

The only creditworthiness score Alice can provide with a valid ZKP is poor.
Therefore the smart contracts of CreditGala can reject Alice’s request for an
undercollateralized loan automatically without an infringement of Alice’s pri-
vacy. Based on the score, the CreditGala smart contract offers Alice a loan with
a 200% collateral rate instead.

data for XY and ZQ. The ZKP requires Alice to put those together into a final reputation
score.

3For CreditGala this has some advantages:

• Redundancy so that their reputation function still works if one of the rating agencies
is unreliable

• Combining different aspects of credit worthiness

21

Architecture

Interfaces

This concept of input data for the web3 footprint is intertwined with many other
components of the Galactica Network. It uses the following interfaces:

zkKYC

• zkKYC is used to generate the dApp-specific humanIDs that index data
about a user on Galactica.

• A ZKP about the zkKYC is needed to force the user to include all her
humanIDs in the reputation computation. The list of dApps relevant to
the reputation needs to be provided by the dApp requiring the reputation
check.

GRRC

• To utilize the reputation based on web3 footprint, its calculation can be
requested from the Galactica Root Reputation Contract.

Wallet

• To privately prove a reputation score, the user creates the ZKP on her
machine 4.

Components

Out of the various options on how to measure a user’s web3 footprint, we chose
a combination of continuous state checks and rating agencies to provide both
simple and expressive options.

Continuous state reputation

DApps that want to contribute web3 footprint data of their users do so using
continuous state checks.

The continuous state assigns each dApp-specific humanID some data. This
can be data the smart contract uses anyway for its business logic, a user rating,
or some other measurement.

The current state is always available on-chain and is continuously updated
whenever a call processed by the smart contract influences the state.

This state is made available to other smart contracts through an ABI func-
tion according to the GIP-42 Standard defined below. To preserve the privacy
of the user (which human IDs he/she has across different services), the smart
contract also provides the root of a Merkle tree holding the data as well as event
logs to construct Merkle proofs.

4We should soon have first test results about a ZKP for KYC + > 18 proof.

22

Advantages

1. Simple to implement

2. Often already available

3. Secure on-chain computation

Disadvantages

1. Requires work by developers to follow the standard

2. Dependencies between contracts could lead to exploits

3. Hard to adjust or introduce metrics retroactively

Rating agencies

Rating agencies use off-chain indexers to compute complex functions over the
full transaction history of users. The results are committed on-chain through
an oracle smart contract.

Rating agencies could be incentivized by on-chain fees implemented in the
oracle contract, off-chain by services relying on them, or through protocol-level
tokenomics.

Advantages

1. Creates a business model for rating agencies

2. Outsources rating to the market fostering innovation of rating DAOs etc.

Disadvantages

1. Depends on the availability of humanID to cross-reference addresses

2. Intransparent rating agencies have a bad reputation on tradFi.

3. Off-chain input can be manipulated

Reputation function

Reputation functions are defined by dApps and users. They can either create
a custom function based on the available on-chain data (continuous state, rating
agencies, balances, etc.) or reuse general reputation functions provided by other
parties.

Available inputs for reputation functions are a ZKP by the user being rated
and on-chain data.

ZKP includes the following components:

23

1. Alice’s human IDs for all dApps relevant to the reputation function (GAave,
Gompound, Lending3) → XY, ZQ, FJ (stay private in the ZKP)

2. Score function input data for those human IDs (never defaulted on GAave,
trust score 8 on Gompound, missed repayment according to Rating Agency
2, scores AAA and B according to Rating Agency 1, private in ZKP)

3. Merkle proofs for input data (private to not disclose the link between
humanIDs)

4. Calculation of final score (calculation private, result public)

The ZKP is sent to the reputation smart contract, verified for ZK validity
and consistency of the Merkle roots with chain data.

Standards

GIP-42: Web3 footprint provider standard

This standard defines how dApps provide data about the web3 footprint of
users. It can be represented in a Galactica Improvement Proposal. It applies to
both dApps implementing continuous state checks and rating agencies’ oracles.

Projects are incentivized to use this standard for interoperability and con-
tribution to the Galactica reputation system.

The keywords ”MUST”, ”MUST NOT”, ”REQUIRED”, ”SHALL”, ”SHALL
NOT”, ”SHOULD”, ”SHOULD NOT”, ”RECOMMENDED”, ”MAY”, and
”OPTIONAL” in this document are to be interpreted as described in RFC
2119.

Methods

Smart contracts implementing this standard must provide the following ABI
functions:

• footprintMerkleRoot

– Returns the latest Merkle root of the Merkle tree holding the contin-
uous state of users.

– Each leaf in the tree should be the Poseidon hash of the user’s human
ID and continuous state.

– Merkle tree must use the poseidon hash

– Each human ID must have at most one leaf in the Merkle tree

• footprintMerkleLevels

– Returns the amount of levels of the Merkle tree

• footprintMerkleRootHistory(root)

24

– Returns true if the given root is in the last X relevant merkle trees

– This avoids concurrency issues of users proving stuff and other users
changing the merkle root

Events

• Event log of modified leaves for merkle tree data availability

Appendix II On-chain access to TX history in
detail

Introduction

A contract storing the fingerprint of every address is considered. The imple-
mentation of this solution is described in brief here.

Inputs

Any dApp may contribute to the contract by posting traces to it. Trace is an
object containing information about an interaction between a user and some
other party. A trace contains the following fields:

1. Party (dApp) unique name (e.g. Uniswap, MakerDAO);

2. Flag. Enum:

a. Red - the interaction has led to unpaid loans or any other conse-
quences that would decrease the ”Financial Trust Score” of a user.
Any malicious actions will be given a red flag;

b. White - any ordinary interaction without the reputation change (e.g.
trades, liquidity provision, stakes). Basically, white flags are just
counters which track a user’s activity;

c. Green - paid loans or any other “good” interactions in terms of “Fi-
nancial Trust Score”;

3. Comment: text field for a comment;

Outputs

1. Any dApp (or other smart contracts including the reputation contract)
may read traces of a given address and make some decisions on top of it.

2. When a smart contract reads traces, it may use a “mask” - a list of ad-
dresses or unique dApp names. Only interactions with listed parties will
be permitted.

25

3. Later on, this mask may be obtained from some public dApp registry
contract, which will measure dApp reputation based on their activity.

4. dApps may grant users red or green flags at their discretion. While the
system is decentralized and anyone can check the dApp code and find out
the situations in which it grants users with every specific flag, the reader
may recognize every role with its own amendments. Some parties may be
excluded, for some parties, red flags may be ignored, etc.

26

